Word Problem #1 (Normal Distribution)

Suppose that the distribution of diastolic blood pressure in a population of hypertensive women is modeled well by a normal probability distribution with mean 100 mm Hg and standard deviation 14 mm Hg. Let X be the random variable representing this distribution. Find two symmetric values "a" and "b" such that

Probability [
$$a < X < b$$
] = .99

Word Problem #1 (Normal Distribution) – SOLUTION

Answer: a=63.95 b=136.05

Easy (but not as thoughtful) Solution:

Step 1

Launch the David Lane normal distribution calculator provided to you on the topic page (5. Normal) of the course website: http://davidmlane.com/hyperstat/Z table.html

Step 2

Click on the radio button to select, "Value from an area (Use to compute Z for confidence intervals)"

Step 3

In the box, labeled <u>area</u>, enter the value .99, in the box labeled <u>mean</u>, enter 100, in the box labeled <u>SD</u> enter 14.

Step 4

Click on the radio button to select, "Between"

Solution Using Z-Score:

Step 1

Launch the David Lane normal distribution calculator provided to you on the topic page (5. Normal) of the course website: http://davidmlane.com/hyperstat/Z table.html
table.html

Click on the radio button to select, "Value from an area (Use to compute Z for confidence intervals)"

Step 3

In the box, labeled \underline{area} , enter the value .99, in the box labeled \underline{mean} , enter 0, in the box labeled \underline{SD} enter 1.

Step 4
Click **on** the radio button to select, **"Between"**

Step 5

From the 0.5th and 99.5th percentiles of the standard normal distribution, solve for the corresponding values of the normal distribution that has mean=100 and sd=14.

Tip - Notice that the 0.5th and 99.5th percentiles are -2.57 and +2.57, symmetric about zero. So, really, we only needed to solve for one of them.

$$z = \frac{x-\mu}{\sigma}$$
 says that $x = \sigma[z] + \mu$

Thus a = 0.5th percentile for X = 14[-2.57] + 100 = 63.95and b = 99.5th percentile for X = 14[+2.57] + 100 = 136.05

Word Problem #2 (Normal Distribution)

Suppose that the distribution of weights of New Zealand hamsters is distributed normal with mean 63.5 g and standard deviation 12.2 g. If there are 1000 weights in this population, how many of them are 78 g or greater?

Word Problem #2 (Normal Distribution) - SOLUTION Answer: 117

Solution:

Pr [weight > 78 g] = Pr [Normal
$$\mu$$
=63.5 σ =12.2 > 78]
= Pr [Standard normal > $\frac{78-\mu}{\sigma}$] = Pr [Standard normal > $\frac{78-63.5}{12.2}$]
= Pr [Normal (0,1) > 1.1885]
= .117

Therefore # Hamsters with weights > 78 g in a population of size 1000

Word Problem #3 (Normal Distribution)

Consider again the normal probability distribution of problem #2. What is the probability of selecting at random a sample of 10 hamsters that has a mean greater than 65 g?

Word Problem #3 (Normal Distribution) - SOLUTION Answer: .3483

Easy Solution:

The solution to this problem requires noticing that the random variable is \overline{X} , so that the standardization to Z must use the SE of $\overline{X} = \sigma / \sqrt{n}$. Tip - But the David Lane calculator does not have a box for you labeled SE. It has only the box labeled SD. This is okay, however. Simply provide the value of the SE in the SD box.

Step 1

Solve for the value of the standard error of the sample mean. SE = σ / \sqrt{n} = 12.2 / $\sqrt{10}$ = 12.2 / 3.16 = 3.86

Step 2

Click on the radio button to select, "Area from a value (Use to compute p from Z)"

Step 3

In the box, labeled <u>mean</u>, enter 63.5, in the box labeled <u>SD</u> enter 3.86.

Step 4

Click on the radio button to select, "Above" In the box at right, enter 65. Click recalculate

Solution Using Z-Score:

$$Pr \left[\ \overline{X}_{n=10} > 65 \ g \ \right] = Pr \left[\ Normal \ \mu_{\overline{X}} = 63.5 \ \sigma_{\overline{X}} = \frac{12.2}{\sqrt{10}} \ > 65 \ \right]$$

= Pr [Standard normal
$$> \frac{65 - \mu_{\bar{\chi}}}{\sigma_{\bar{\chi}}}$$
] = Pr [Standard normal $> \frac{65 - 63.5}{12.2 / \sqrt{10}}$]

$$= Pr [Normal (0,1) > 0.3888] = .3483$$

- Area from a value (Use to compute p from Z)
- Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Mean 0

SD 1

• Above 0.3888

• Below 1.96

○ Between -1.96 and 1.96
 ○ Outside -1.96 and 1.96

Results:

Area (probability) 0.3487

Recalculate