Word Problem \#1 (Normal Distribution)

Suppose that the distribution of diastolic blood pressure in a population of hypertensive women is modeled well by a normal probability distribution with mean 100 mm Hg and standard deviation 14 mm Hg . Let X be the random variable representing this distribution. Find two symmetric values "a" and "b" such that

Probability $[\mathrm{a}<\mathrm{X}<\mathrm{b}]=.99$

Word Problem \#1 (Normal Distribution) - SOLUTION

Answer: $a=63.95 \quad b=136.05$

Easy (but not as thoughtful) Solution:

Step 1
Launch the David Lane normal distribution calculator provided to you on the topic page (5. Normal) of the course website: http://davidmlane.com/hyperstat/Z_table.html
Step 2
Click on the radio button to select, "Value from an area (Use to compute \mathbf{Z} for confidence intervals)"
Step 3
In the box, labeled area, enter the value $\mathbf{. 9 9}$, in the box labeled mean, enter 100, in the box labeled $\underline{\text { SD }}$ enter 14.

Step 4
Click on the radio button to select, "Between"

Solution Using Z-Score:

Step 1
Launch the David Lane normal distribution calculator provided to you on the topic page (5. Normal) of the course website: http://davidmlane.com/hyperstat/Z_table.html
Step 2
Click on the radio button to select, "Value from an area (Use to compute \mathbf{Z} for confidence intervals)"
Step 3
In the box, labeled area, enter the value $\mathbf{. 9 9}$, in the box labeled mean, enter $\mathbf{0}$, in the box labeled $\underline{\mathbf{S D}}$ enter 1.

Step 4
Click on the radio button to select, "Between"

Step 5

From the $0.5^{\text {th }}$ and $99.5^{\text {th }}$ percentiles of the standard normal distribution, solve for the corresponding values of the normal distribution that has mean=100 and $\mathrm{sd}=14$.

Tip - Notice that the $0.5^{\text {th }}$ and $99.5^{\text {th }}$ percentiles are -2.57 and +2.57 , symmetric about zero. So, really, we only needed to solve for one of them.

$$
z=\frac{x-\mu}{\sigma} \text { says that } \quad x=\sigma[z]+\mu
$$

Thus $\mathrm{a}=0.5$ th percentile for $\mathrm{X}=14[-2.57]+100=63.95$
and $b=99.5$ th percentile for $X=14[+2.57]+100=136.05$

Word Problem \#2 (Normal Distribution)

Suppose that the distribution of weights of New Zealand hamsters is distributed normal with mean 63.5 g and standard deviation 12.2 g . If there are 1000 weights in this population, how many of them are 78 g or greater?

Word Problem \#2 (Normal Distribution) - SOLUTION

Answer: 117

Solution:

$$
\begin{aligned}
& \operatorname{Pr}[\text { weight }>78 \mathrm{~g}]=\operatorname{Pr}[\text { Normal } \mu=63.5 \sigma=12.2>78] \\
= & \operatorname{Pr}\left[\text { Standard normal }>\frac{78-\mu}{\sigma}\right]=\operatorname{Pr}\left[\text { Standard normal }>\frac{78-63.5}{12.2}\right] \\
= & \operatorname{Pr}[\text { Normal }(0,1)>1.1885] \\
= & .117
\end{aligned}
$$

Therefore \# Hamsters with weights > 78 g in a population of size 1000

$$
\begin{aligned}
& =(1000)(.117) \\
& =117
\end{aligned}
$$

Word Problem \#3 (Normal Distribution)

Consider again the normal probability distribution of problem \#2. What is the probability of selecting at random a sample of 10 hamsters that has a mean greater than 65 g ?

Word Problem \#3 (Normal Distribution) - SOLUTION
 Answer: . 3483

Easy Solution:

The solution to this problem requires noticing that the random variable is \bar{X}, so that the standardization to Z must use the SE of $\overline{\mathrm{X}}=\sigma / \sqrt{ } \mathrm{n}$. Tip - But the David Lane calculator does not have a box for you labeled SE. It has only the box labeled SD. This is okay, however. Simply provide the value of the SE in the SD box.

Step 1
$\overline{\text { Solve }}$ for the value of the standard error of the sample mean. $\mathrm{SE}=\sigma / \sqrt{ } \mathrm{n}=12.2 / \sqrt{ } 10=12.2 / 3.16$ $=3.86$

Step 2
Click on the radio button to select, "Area from a value (Use to compute prom Z)"
Step 3
In the box, labeled mean, enter 63.5, in the box labeled $\underline{\text { SD }}$ enter 3.86.
Step 4
Click on the radio button to select, "Above" In the box at right, enter 65. Click recalculate

Solution Using Z-Score:

$\operatorname{Pr}\left[\bar{X}_{\mathrm{n}=10}>65 \mathrm{~g}\right]=\operatorname{Pr}\left[\right.$ Normal $\left.\mu_{\overline{\mathrm{x}}}=63.5 \sigma_{\overline{\mathrm{x}}}=\frac{12.2}{\sqrt{10}}>65\right]$
$=\operatorname{Pr}\left[\right.$ Standard normal $\left.>\frac{65-\mu_{\overline{\mathrm{X}}}}{\sigma_{\overline{\mathrm{X}}}}\right]=\operatorname{Pr}\left[\right.$ Standard normal $\left.>\frac{65-63.5}{12.2 / \sqrt{10}}\right]$
$=\operatorname{Pr}[\operatorname{Normal}(0,1)>0.3888]=.3483$

© Area from a value (Use to compute p from Z)
\bigcirc Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:
Mean 0
SD 1
© Above 0.3888

- Below 1.96

Between $\begin{aligned} & -1.96 \\ & \text { and } 1.96 \\ & \text { Outside }-1.96\end{aligned}$ and 1.96

Results:
Area (probability) 0.3487
Recalculate

